当前位置: 师资队伍1
卢浩
发布者:吕华祺 发布时间:2023-09-21 访问次数:2033

姓名:卢浩
性别:
民族:
办公电话:
职务:
职称:讲师、硕士生导师
 电子邮箱luhao@upc.edu.cn

个人简介:卢浩,博士,硕士生导师。20146月毕业于银河电子游戏1331过程装备与控制工程专业,获得工学学士学位;20186月毕业于北京化工大学控制工程专业,获得工学硕士学位;20235月毕业于爱荷华州立大学电气工程及机械工程专业,获工学博士学位。20236月入职银河电子游戏1331软件工程学院、银河电子游戏1331。 担任Mechanical Systems and Signal ProcessingExpert Systems with ApplicationsReliability Engineering and System Safety 等国际期刊、会议的审稿人。


研究领域

旋转设备故障诊断、联邦学习、物理信息深度学习

论文论著

1.Lu, H., Nemani, V.P., Barzegar, V., Allen, C., Hu, C., Laflamme, S., Sarkar, S. and Zimmerman, A.T., 2023. A physics-informed feature weighting method for bearing fault diagnostics. Mechanical Systems and Signal Processing191, p.110171.

2.Lu, H., Barzegar, V., Nemani, V.P., Hu, C., Laflamme, S. and Zimmerman, A.T., 2022. Joint training of a predictor network and a generative adversarial network for time series forecasting: A case study of bearing prognostics. Expert Systems with Applications203, p.117415

3.Nemani, V.P., Lu, H., Thelen, A., Hu, C. and Zimmerman, A.T., 2022. Ensembles of probabilistic LSTM predictors and correctors for bearing prognostics using industrial standards. Neurocomputing491, pp.575-596.

4.Shen, S., Lu, H., Sadoughi, M., Hu, C., Nemani, V., Thelen, A., Webster, K., Darr, M., Sidon, J. and Kenny, S., 2021. A physics-informed deep learning approach for bearing fault detection. Engineering Applications of Artificial Intelligence103, p.104295.



Baidu
sogou